Generatives Deep Learning – David Foster, Markus Fraaß, Konstanti... | buch7 – Der soziale Buchhandel
Bitte warten ...
icon suche icon merkliste icon warenkorb
Blick ins Buch

Generatives Deep Learning

Maschinen das Malen, Schreiben und Komponieren beibringen

Lassen Sie Ihre Deep-Learning-Modelle kreativ werden!

  • Das Buch zeigt, wie die innovativsten Deep-Learning-Algorithmen wie Generative Adversarial Networks (GANs) und Variational Autoencoder (VAEs) funktionieren
  • Für kreative Data Scientists und Programmierer, die gerne mit Code experimentieren
  • Verwendet Python, Keras und TensorFlow

Generative Modelle haben sich zu einem der spannendsten Themenbereiche der Künstlichen Intelligenz entwickelt: Mit generativem Deep Learning ist es inzwischen möglich, einer Maschine das Malen, Schreiben oder auch das Komponieren von Musik beizubringen - kreative Fähigkeiten, die bisher dem Menschen vorbehalten waren. Mit diesem praxisnahen Buch können Data Scientists einige der eindrucksvollsten generativen Deep-Learning-Modelle nachbilden, wie z.B. Generative Adversarial Networks (GANs), Variational Autoencoder (VAEs), Encoder-Decoder- sowie World-Modelle.

David Foster vermittelt zunächst die Grundlagen des Deep Learning mit Keras und veranschaulicht die Funktionsweise jeder Methode, bevor er zu einigen der modernsten Algorithmen auf diesem Gebiet vorstößt. Die zahlreichen praktischen Beispiele und Tipps helfen Ihnen herauszufinden, wie Ihre Modelle noch effizienter lernen und noch kreativer werden können.

Aus dem Inhalt

  • Entdecken Sie, wie Variational Autoencoder den Gesichtsausdruck auf Fotos verändern können
  • Erstellen Sie praktische GAN-Beispiele von Grund auf und nutzen Sie CycleGAN zur Stilübertragung und MuseGAN zum Generieren von Musik
  • Verwenden Sie rekurrente generative Modelle, um Text zu erzeugen, und lernen Sie, wie Sie diese Modelle mit dem Attention-Mechanismus verbessern können
  • Erfahren Sie, wie generatives Deep Learning Agenten dabei unterstützen kann, Aufgaben im Rahmen des Reinforcement Learning zu erfüllen
  • Lernen Sie die Architektur von Transformern (BERT, GPT-2) und Bilderzeugungsmodellen wie ProGAN und StyleGAN kennen

»Dieses Buch ist eine leicht zugängliche Einführung in das Deep-Learning-Toolkit für generatives Modellieren. Wenn Sie ein kreativer Praktiker sind, der es liebt, an Code zu basteln, und Deep Learning für eigene Aufgaben nutzen möchte, dann ist dieses Buch genau das Richtige für Sie.« - David Ha, Research Scientist bei Google Brain

Taschenbuch 03/2020
kostenloser Standardversand in DE auf Lager

Die angegebenen Lieferzeiten beziehen sich auf den Paketversand und sofortige Zahlung (z.B. Zahlung per Lastschrift, PayPal oder Sofortüberweisung).
Der kostenlose Standardversand (2-5 Werktage) benötigt in der Regel länger als der kostenpflichtige Paketversand (1-2 Werktage). Sonderfälle, die zu längeren Lieferzeiten führen können (Bsp: Bemerkung für Kundenservice, Zahlung per Vorkasse oder Sendung ins Ausland) haben wir hier für Sie detailliert beschrieben.

Lieferung bis Mo, 19.Apr. (ca. ¾), oder Di , 20.Apr. (ca. ¼): bestellen Sie in den nächsten 2 Stunden, 44 Minuten mit Paketversand.

Die angegebenen Lieferzeiten beziehen sich auf den Paketversand und sofortige Zahlung (z.B. Zahlung per Lastschrift, PayPal oder Sofortüberweisung).
Der kostenlose Standardversand (2-5 Werktage) benötigt in der Regel länger als der kostenpflichtige Paketversand (1-2 Werktage). Sonderfälle, die zu längeren Lieferzeiten führen können (Bsp: Bemerkung für Kundenservice, Zahlung per Vorkasse oder Sendung ins Ausland) haben wir hier für Sie detailliert beschrieben.

Spenden icon Dank Ihres Kaufes spendet buch7 ca. 1,40 € bis 2,59 €.

Die hier angegebene Schätzung beruht auf dem durchschnittlichen Fördervolumen der letzten Monate und Jahre. Über die Vergabe und den Umfang der finanziellen Unterstützung entscheidet das Gremium von buch7.de.

Die genaue Höhe hängt von der aktuellen Geschäftsentwicklung ab. Natürlich wollen wir so viele Projekte wie möglich unterstützen.

Den tatsächlichen Umfang der Förderungen sowie die Empfänger sehen Sie auf unserer Startseite rechts oben, mehr Details finden Sie hier.

Weitere Informationen zu unserer Kostenstruktur finden Sie hier.

Benachrichtigung

Autoreninformationen

David Foster ist Mitbegründer von Applied Data Science, einem Beratungsunternehmen für Datenanalyse, das innovative Lösungen für Kunden anbietet. Er hat einen M.A. in Mathematik vom Trinity College, Cambridge, UK, und einen M.Sc. in Operational Research von der britischen University of Warwick.

Produktdetails

EAN / 13-stellige ISBN 978-3960091288
10-stellige ISBN 3960091281
Verlag Dpunkt.Verlag GmbH
Sprache Deutsch
Originalsprache Englisch
Editionsform Taschenbuch
Einbandart Taschenbuch
Erscheinungsdatum 26. März 2020
Seitenzahl 292
Illustrationsbemerkung komplett in Farbe
Format (L×B×H) 23,8cm × 16,1cm × 2,2cm
Gewicht 598g
Warengruppe des Lieferanten Naturwissenschaften - Informatik, EDV
Mehrwertsteuer 7% (im angegebenen Preis enthalten)
Bestseller aus dieser Kategorie

Naturwissenschaften - Informatik, EDV

Noch nicht das passende gefunden?
Verschenken Sie einfach einen Gutschein.

Auch hier werden natürlich 75% des Gewinns gespendet.

Gutschein kaufen

Was unsere Kunden sagen:

Impressum Datenschutz Hilfe / FAQ